
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Creating a Rudimentary Stardew Valley Save File

Analyser Using the Boyer-Moore Algorithm

Jeremy Syaloom Okey Nathanael Simbolon - 135200421

Informatics Study Program

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia
113520042@std.stei.itb.ac.id

Abstract—Pattern matching, especially those that involves string,

is an important topic in computer science to this day. Decades of

research has been done to tackle this problem in an efficient manner.

The Boyer-Moore string-search algorithm is one of the most well-

known string-search algorithms with broad usage, various

implementations, and highly respected as one of the standard

benchmarks in string-search literature. In this paper, I would like to

present a simple use case for the algorithm, a rudimentary save file

analyser for Stardew Valley, a well-known video game played by

millions of players around the world

Keywords—Boyer-Moore, Stardew Valley, save file analyser

I. INTRODUCTION

For millennia, we have come to an understanding that
human’s advancement in science and technology cannot be
separated from our understanding of patterns. Patterns exist
around us in the form of regularity in nature, man-made designs,
and abstract concepts. Our senses allow us to observe these
regularities and open a new door to thorough analysis in hopes
for increasing our understanding. These noticeable arrangements
are scattered throughout our scientific idea, from mathematics, to
language. The field of computer science has been spearheading
our efforts to further expand our knowledge in this area.

Pattern matching and recognition is one of the most
celebrated topics in computer science, due to our advancements
since the 1950-s during which regular expressions are first
described [1]. In modern society, pattern matching and
recognition see wide applications from computer-aided diagnosis
in medical science [2] to image processing [3]. In computer
science, extensive efforts around pattern matching and
recognition have been made, especially in those involving
strings.

Over the course of seven decades, several string-matching
algorithms have been developed to fulfill scientists’ needs in
efficiency. One of those is the Boyer-Moore algorithm, first
described by Robert S. Boyer and J. Strother Moore in 1977 [4].
Over the following years, several optimisations have been made
to the algorithm, notably by Galil in 1979 [5], then by Apostolico
and Giancarlo in 1986 [6].

In this paper, I shall present a simple use case for the well-
known algorithm in the form of a rudimentary save file analyser
for the popular video game Stardew Valley. Hopefully, this paper
will induce more discussion and interest in the topic, especially
for newcomers in the field of string matching.

II. THEORETICAL FOUNDATION

A. Pattern Matching

Pattern matching is an area of research in computer science
that is devoted to the act of checking the presence of a pattern in
a given sequence. The history of pattern matching dates back to
1951 when regular expressions is first described by
mathematician Stephen Cole Kleene [1]. Following that, several
programming languages are developed to aide scientists in
pattern-matching activities, especially those involving strings.
These languages include COMIT in 1957 [7], SNOBOL in 1962
[8], and Refal in 1968 [9].

In 1970, James H. Morris and Vaughan Pratt published a
technical report in the 1970 regarding a linear fast string-
matching algorithm [10]. The algorithm is now referred to as the
Knutt-Morris-Pratt algorithm, owing to the fact that Donald E.
Knutt discovered the algorithm independently and them releasing
a joint paper in 1977 [11]. Since then, several other string-
matching algorithms have been born. A simplified timeline can
be seen below.

Fig. 1. The development history of pattern matching algorithms [12]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

B. Boyer-Moore Algorithm

The Boyer-Moore algorithm is a string-matching algorithm
first described by Robert S. Boyer and J. Strother Moore in 1977
[4]. The algorithm has a worst-case running time of 𝑂(𝑚 + 𝑛) if
the pattern does not exist in the text [11]. If the pattern does exist,
however, the algorithm has a worst-case running time of 𝑂(𝑚𝑛)
[5]. The algorithm compares characters from right to left, unlike
most string-matching algorithms. In addition, the algorithm
preprocesses the pattern to obtain a last occurrence table, that is
a table that stored the last occurrence of a given alphabet in the
pattern.

The algorithm can be described in pseudocode as follows
[13].

Fig. 2. Illustration on how the Boyer-Moore algorithm works [14]

C. Stardew Valley

Stardew Valley is an open-ended country-life role-playing
game created by game designer Eric Barone under the alias of
ConcernedApe. Heavily inspired by the Harvest Moon series, the
game sets the player as an overworked corporate worker that has
just inherited their grandfather’s farm in the countryside. The soft
goal of the game is to maintain the inherited farm and build it
back to its former glory.

Fig. 3. A view of the in-game farm in the evening [15]

The game is written in C# and was released on PC on
February 26th, 2016. Further release was expanded to Mac and
Linux, Xbox One, Playstation 4, Nintendo Switch, and iOS over
the following two years. As of March 2022, Stardew Valley has
sold over 20 million copies across all platforms, with 13 million
copies sold on PC alone [15].

III. METHODOLOGY

We shall determine the appropriate pattern to be search on the
game save file. The Stardew Valley save file is written in the
Extensive Markup Language (XML). With this information, we
can choose the appropriate XML tag to be search in order to
obtain the information we want from the save file.

I have written a short Python code that can be used to achieve
our goal. The full source code and a copy of this paper can be
found in https://github.com/tastytypist/save-file-analyser.

Our strategy to obtain the wanted information from the save
file can be divided into three sub-strategies. The first sub-strategy
involves simply finding the appropriate tag for the information.
Then traversing the save file can be done until a closing tag is
found. The information parsed can then be stored into the
program. The code snippet can be constructed as follows.

In the code snippet above, I pass the appropriate XML tag to
the method find. The method find implements the Boyer-

Moore algorithm and can be seen in the code snippet below.

def analyse(self):
 self.import_save_file()

 self.name = self.find("name")
 self.farm = self.find("farmName")
 self.farm_type = int(self.find("whichFarm"))
 self.time = int(self.find("millisecondsPlayed"))
 self.version = self.find("gameVersion")
 self.money = int(self.find("totalMoneyEarned"))
 self.spouse = self.find("spouse")

Boyer-Moore Algorithm

1. For a given pattern and the alphabet used in

both the pattern and the text, construct the
bad-symbol shift table

2. Using the pattern, construct the good-suffix
shift table

3. Align the pattern against the beginning of the
text

4. Repeat the following step until either a
matching substring is found or the pattern
reaches beyond the last character of the text.
Starting with the last character in the
pattern, compare the corresponding characters
in the pattern and the text until either all m
character pairs are matched (then stop) or a
mismatching pair is encountered after k ≥ 0
character pairs are matched successfully. In
the latter case, retrieve the entry t1(c) from
the c’s column of the bad-symbol table where c
is the text’s mismatched character. If k > 0,
also retrieve the corresponding d2 entry from
the good-suffix table. Shift the pattern to the

right by max{t1(c) − k, 1}.

https://github.com/tastytypist/save-file-analyser

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

The second sub-strategy involves finding the existence of
multiple tags. If a tag being searched is found, a counter depicting
how many of those tags have been found is stored. This strategy
is used to count how many stardrops a player has obtained. The
code snippet can be seen as follows.

The third sub-strategy involves finding multiple occurrences
of XML tags. From decompiling the game source code, the tag
being searched only appears twice at maximum. With this
knowledge, we can store the occurrence count of the tag and
search in tag using a loop with the occurrence count as a
condition. This strategy is used to find the name of child(ren) the
farmer has. The code snippet can be seen as follows.

IV. RESULTS

Here are the results of using the program with the provided
test save files.

Fig. 4. Using the program with test file Clancy_241495642

Fig. 5. Using the program with test file Mark_256552446

The test save files showcased here are also available at the
GitHub repository of this paper, accessible via the following link:
https://github.com/tastytypist/save-file-analyser.

V. CONCLUSION

The Boyer-Moore algorithm is one the most well-known
string-matching algorithm with broad implementation. In this
paper, I present a simple use case for the algorithm in the form of
save file analyser of the game Stardew Valley. I have also
showcased that the program works as expected. Unfortunately,
the program still has a lot of limitation regarding its ability.

As a suggestion for future researchers who are interested in
this topic, it may be advisable to further expand the analyser to
support perfection tracking, museum tracking, fish caught
tracking, food cooked tracking, item crafted tracking, and social
tracking. Such improvement will surely increase the
functionality of the analyser, thus helping players to better
understand and keep track of their progress during the game.

def find(self, attr, child=False, data=None):
 if not data:
 data = self.data
 self.finder = str_find.StringFinder(attr, data)
 self.finder.find_string()

 if self.finder.index == -1:
 return None

 character = data[self.finder.index]
 start_index = self.finder.index
 stop_index = self.finder.index

 if not child:
 while character != "<":
 if character == ">":
 start_index = stop_index + 1
 stop_index += 1
 character = data[stop_index]
 else:
 while character != "/":
 if character == ">":
 start_index = stop_index + 1
 stop_index += 1
 character = data[stop_index]
 stop_index -= 1

 return data[start_index:stop_index]

self.stardrop_id = ["CF_Fair", "CF_Fish",
 "CF_Mines", "CF_Sewer",
 "CF_Spouse", "CF_Statue",
 "museumComplete"]

def analyse(self):
 for ids in self.stardrop_id:
 if self.find(ids):
 self.stardrops += 1

self.kids = [] # type: "Child"

def analyse(self):
 child = self.find('type="Child"', child=True)
 last_found = 0
 while child and len(self.kids) < 2:
 self.kids.append(child)
 last_found += self.finder.index
 child = self.find('type="Child"',
 child=True,
 data=self.data[last_found
 + 12:])

https://github.com/tastytypist/save-file-analyser

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

VI. ACKNOWLEDGMENT

This paper would not have been possible without the
opportunities given by my lecturer, Dr. Ir. Rinaldi Munir, M.T.
His enthusiasm, curiosity, and ability to bring out the best of his
student motivated me to explore and push my limits in my study.
I would like to also thank Mr. Eric Barone for creating a stunning
video game loved by millions of people around the world.

REFERENCES

[1] Kleene, S.C., 1956. Representation of Events in Nerve Nets and Finite
Automata. Automata Studies. (AM-34), 34, pp.3–42.
https://doi.org/10.1515/9781400882618-002.

[2] Milewski, R. and Govindaraju, V., 2008. Binarization and cleanup of
handwritten text from carbon copy medical form images. Pattern
Recognition, 41(4).

[3] Poddar, A., Sahidullah, M. and Saha, G., 2017. Speaker Verification with
Short Utterances: A Review of Challenges, Trends and Opportunities. IET
Biometrics, 7. https://doi.org/10.1049/iet-bmt.2017.0065.

[4] Boyer, R.S. and Moore, J.S., 1977. A fast string searching algorithm.
Communications of the ACM, 20(10), pp.762–772.
https://doi.org/10.1145/359842.359859.

[5] Galil, Z., 1979. On improving the worst case running time of the Boyer-
Moore string matching algorithm. Communications of the ACM, 22(9),
pp.505–508. https://doi.org/10.1145/359146.359148.

[6] Apostolico, A. and Giancarlo, R., 1986. The Boyer–Moore–Galil String
Searching Strategies Revisited. SIAM Journal on Computing, 15(1),
pp.98–105. https://doi.org/10.1137/0215007.

[7] Yngve, V.H., 1958. A Programming Language for Mechanical
Translation. Mechanical Translation, 5(1).

[8] Gimpel, J.F., 1973. A theory of discrete patterns and their implementation
in SNOBOL4. Communications of the ACM, 16(2), pp.91–100.
https://doi.org/10.1145/361952.361960.

[9] Turchin, V.F., 1986. The concept of a supercompiler. ACM Transactions
on Programming Languages and Systems, 8(3), pp.292–325.
https://doi.org/10.1145/5956.5957.

[10] Weiner, P., 1973. Linear pattern matching algorithms. In: 14th Annual
Symposium on Switching and Automata Theory (swat 1973). United States
of America: IEEE. https://doi.org/10.1109/swat.1973.13.

[11] Knuth, D.E., Morris, Jr., J.H. and Pratt, V.R., 1977. Fast Pattern Matching
in Strings. SIAM Journal on Computing, 6(2), pp.323–350.
https://doi.org/10.1137/0206024.

[12] Zhang, H., 2011. Parallelization of a software based intrusion detection
system - Snort. Thesis.

[13] Levitin, A., 2012. Introduction to the Design & Analysis of Algorithms.
Essex: Pearson..

[14] Davidson, A., 2006. Pattern Matching. [online] fivedots. Available at:
<http://fivedots.coe.psu.ac.th/Software.coe/LAB/PatMatch>

[15] Barone, E., n.d. Stardew Valley - Press. [online] Stardew Valley. Available
at: <https://www.stardewvalley.net/press/>.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 23 Mei 2021

Jeremy S.O.N. Simbolon

13520042

